RELATIVELY CONVEX SUBSETS OF SIMPLY CONNECTED PLANAR SETS

BY

EVELYN MAGAZANIK AND MICHA A. PERLES

Einstein Institute of Mathematics, Edmond J. Safra Campus
The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
e-mail: emaga@math.huji.ac.il, perles@math.huji.ac.il

ABSTRACT

Let $D \subset \Re^2$ be simply connected. A subset $K \subset D$ is **relatively convex** if $a,b \in K, [a,b] \subset D$ implies $[a,b] \subset K$. We establish the following version of Helly's Topological Theorem: If \mathcal{K} is a family of (at least 3) compact, polygonally connected and relatively convex subsets of D, then $\bigcap \mathcal{K} \neq \emptyset$, provided each three members of \mathcal{K} meet.

We also prove other results related to the combinatorial metric $\rho_K(a, b)$ (= smallest number of edges of a polygonal path from a to b in K).

1. Introduction

Let D be a subset of \Re^2 . For points $a, b \in D$ we denote by $\rho_D(a, b)$ the smallest number of edges of a polygonal path in D that connect a and b. $(\rho_D(a, b) = \infty$ if there is no such path.) If D is polygonally connected, then ρ_D is an integer valued metric on D. This metric has particularly nice properties when D is simply connected. Such properties were first investigated by Bruckner and Bruckner in [BB]. It turns out that the notion of **relative convexity** is a particularly useful tool for dealing with these properties. (A subset K of D is **relatively convex** with respect to D if for every two points $x, y \in K$, $[x, y] \subset D$ implies $[x, y] \subset K$. Note that the intersection of any family of relatively convex subsets of D is again relatively convex.)

In this paper we establish the following results:

1. Let $\mathbf{P} = \langle a = p_0, p_1, \dots, p_t = b \rangle$ $(t = \rho_D(a, b))$ be a ρ_D -minimal path from a to b in D. Note that \mathbf{P} is necessarily simple (no self intersections). If

- x is a variable point that moves along **P** from a to b, then $\rho_D(a,x)$ is a monotone non-decreasing function of x (Lemma 2.8).
- If K₁, K₂ are relatively convex and polygonally connected subsets of D with nonempty intersection, then K₁ ∩ K₂ is also polygonally connected and relatively convex in D (Lemma 3.2).
 In fact, for points a, b ∈ K₁ ∩ K₂, we determine the best possible upper
 - In fact, for points $a, b \in K_1 \cap K_2$, we determine the best possible upper bound for $\rho_{K_1 \cap K_2}(a, b)$ in terms of $\rho_{K_1}(a, b)$ and $\rho_{K_2}(a, b)$.
- 3. We give an elementary proof of Helly's Topological Theorem for compact, polygonally connected and relatively convex subsets of a simply connected set $D \subset \Re^2$. The theorem (Theorem 3.1) states that if D is a simply connected set in \Re^2 , and $\{K_i : i \in I\}$ (with $|I| \geq 3$) is any family of subsets of D that are compact, polygonally connected and relatively convex in D, and such that each three have a point in common, then the intersection of the whole family is nonempty.

All these results will be used in a subsequent paper by the same authors [MP2] to establish a connection between the ρ -diameter and the ρ -radius of a compact simply connected planar set: "If $K \subset \Re^2$ is compact and simply connected, and if $\rho_K(a,b) \leq n$ for all $a,b \in K$, then there is a point $z \in K$ such that $\rho_K(a,z) \leq \lceil \frac{n+1}{2} \rceil$ for all $a \in K$. This bound is best possible for all $n \geq 1$."

2. Relatively convex subsets and the Monotonicity Lemma

2.1 INTRODUCTORY RESULTS. We denote by aff(a, b) the line joining a and b, by $R(a \to b)$ the ray issuing from a in the direction of b, and by $[a_1, \ldots, a_m]$ the convex hull of the points a_1, \ldots, a_m .

Definition 2.1: If $K \subset D$, the **star of K in D**, denoted by K' or st(K, D), is the set of all points $y \in D$ that see a point of K via D. That is, $K' = \{y \in D : (\exists x \in K)([x,y] \subset D)\}.$

Definition 2.2: Let x be a point in D. The n-th star of x in D is the set $st_n(x,D) = \{z \in D : \text{there exists a polygonal path of at most } n \text{ edges joining } x \text{ and } z \text{ via } D\} \ (= \{z \in D : \rho_D(x,z) \leq n\}).$

Observe that if $K = \{x\}$ then $K' = st_1(x, D) = st(x, D)$ is the usual star, and if $K = st_n(x, D)$, then $K' = st_{n+1}(x, D)$.

LEMMA 2.3: Let $\mathbf{Q} = \langle q_0, q_1, \dots, q_n = q_0 \rangle$ be a simple closed polygon in \Re^2 $(n \geq 3)$. Denote by Q the union of \mathbf{Q} and its interior. If t is an interior point of an edge $[q_i, q_{i+1}]$ of \mathbf{Q} , then t sees via Q some vertex of \mathbf{Q} other than q_i, q_{i+1} .

Proof: Consider a triangulation of Q by noncrossing interior diagonals of **Q**. (For the existence of such triangulations see [Hi].) In this triangulation, the boundary edge $[q_i, q_{i+1}]$ is an edge of a unique triangle $[q_i, q_{i+1}, q_j]$. Clearly, t sees q_j via Q.

THEOREM 2.4: If D is a simply connected set in \Re^2 , and $K \subset D$ is relatively convex and polygonally connected, then K' is also relatively convex and polygonally connected.

Proof: The fact that K' is polygonally connected is obvious. We proceed to show that K' is relatively convex in D. That is, suppose $a', b' \in K'$, $a' \neq b'$, $[a', b'] \subset D$. We will show that $[a', b'] \subset K'$. We distinguish the following cases:

CASE 1: a' sees (via D) a point $a \in K$ on aff(a', b'). In this case,

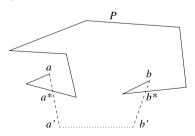
$$\operatorname{conv}\{a,a',b'\} = [a,a'] \cup [a',b'] \subset D,$$

so every point on [a',b'] sees a via D, hence $[a',b'] \subset K'$.

CASE 2: b' sees (via D) a point $b \in K$ on aff(a', b'). This is exactly the same as Case 1.

CASE 3: a' and b' see (via D) a point $c \in K$ (not on aff(a', b')). In this case the boundary of the triangle [a', b', c] is in D and therefore $[a', b', c] \subset D$, since D is simply connected. Thus every point on [a', b'] sees c via D, hence $[a', b'] \subset K'$.

CASE 4: Otherwise, assume a' sees (via D) a point $a \in K$, and b' sees (via D) a point $b \in K$, $a \neq b$, $a, b \notin \text{aff}[a', b']$. Let $P \subset K$ be a simple polygon that connects a with b. Let a^* be the first point on [a', a] (going from a' to a) that belongs to P, and let b^* be the first point on [b', b] (going from b' to b) that belongs to P (see Figure).



Let P^* be the subpolygon of P with endpoints a^*, b^* . By our construction $P^* \cap [a', a^*] = \{a^*\}$ and $P^* \cap [b', b^*] = \{b^*\}$. Moreover, $a^* \neq b^*$, $[a', a^*] \cap [a', b'] = \{a'\}$ and $[b', b^*] \cap [a', b'] = \{b'\}$ (otherwise we are in one of the previous cases).

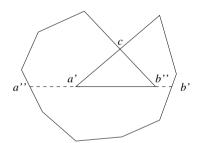
Also $P^* \subset K$ and $[a',b'] \cap K = \emptyset$ (see cases 1,2); hence $[a',b'] \cap P^* = \emptyset$. The segments $[a',a^*]$ and $[b',b^*]$ may be disjoint, or they may cross. (All other types of intersection of these two segments would lead us to one of the cases 1,2,3.)

CASE 4.1: $[a', a^*] \cap [b', b^*] = \emptyset$. In this case $[a', a^*] \cup P^* \cup [b^*, b'] \cup [b', a']$ is a simple closed polygon in D, and its interior is in D as well, D being simply connected. By Lemma 2.3, every interior point of [a', b'] sees a point of $P^*(\subset K)$ via D, and thus $[a', b'] \subset K'$.

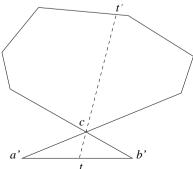
CASE 4.2: $[a', a^*]$ and $[b', b^*]$ cross at a point c interior to both intervals.

Define $\mathbf{Q} = [c, a^*] \cup P^* \cup [b^*, c]$. \mathbf{Q} is a simple closed polygon in D, and $[a', b'] \cap \mathbf{Q} = \emptyset$. If [a', b'] lies in the interior of \mathbf{Q} , let us extend the interval [a', b'] beyond a' until it meets \mathbf{Q} at a point a'' and also beyond b' until it meets \mathbf{Q} at a point b''.

Clearly, a'' and b'' belong to $P^*(\subset K)$ and $[a'',b'']\subset \mathbf{Q}\cup\mathrm{int}\mathbf{Q}(=\mathbf{Q})\subset D$. Since K is relatively convex in D, $[a',b']\subset [a'',b'']\subset K\subset K'$ (see Figure).



There remains the case where [a',b'] is exterior to \mathbf{Q} . Take a point t in the open interval (a',b') and draw the ray $\mathbf{R}(t\to c)$. The initial segment [t,c] is exterior to \mathbf{Q} , but interior to $[a',b',c]\subset D$. At c the ray enters int \mathbf{Q} $(\subset D)$ and stays there until it hits P^* at some point t'. Thus t sees $t'(\in K)$ via D, hence $t\in K'$ (see Figure).



Applying Theorem 2.4 to the singleton $K = \{x\}$ $(x \in D)$ we obtain

COROLLARY 2.5: Let D be a simply connected set in \Re^2 . If $x \in D$ then st(x, D) is relatively convex in D.

Continuing by induction on n, we obtain in the same way:

COROLLARY 2.6: Let D be a simply connected set in \Re^2 , and x a point in D. Then $st_n(x, D)$ is relatively convex in D.

This corollary is an extension of Lemma 1 in [BB].

2.2 THE MONOTONICITY LEMMA. Let $D \subset \Re^2$ and $a, b \in D$ be such that $\rho_D(a,b) = n$. Let L(a,b) be a polygonal path in D that connects a with b and has only n edges. As we have already mentioned, L(a,b) is simple. We order L(a,b) in a natural way from a to b. For $s,t\in L(a,b), s\neq t$, we write s< t to denote that s precedes t on L(a,b).

Assume $L(a, b) = \langle p_0, p_1, \dots, p_n \rangle$, where $p_0 = a$ and $p_n = b$.

The main result of this section, Lemma 2.8, which will be needed in [MP2], states that if D is simply connected, then the function $\rho_D(a, s)$ $(s \in L(a, b))$ is monotone nondecreasing.

LEMMA 2.7: If $s \in [p_i, p_{i+1}] \subset L(a, b)$, then $\rho_D(a, s) = i$ or i + 1.

Proof: Immediate from the minimality of L(a,b) and the fact that $\rho_D(a,p_j)=j$ $(j=0,1,\ldots,n)$.

LEMMA 2.8: Let D be a simply connected set in \Re^2 , and let a, b be two points in D such that $\rho_D(a, b) = n$. Then the function $\rho_D(a, s)$ is a nondecreasing integer valued function on L(a, b).

Proof: Assume that $s, t \in L(a, b)$ and s < t. We show that $\rho_D(a, s) \le \rho_D(a, t)$. Suppose that $s \in [p_i, p_{i+1}]$ and $t \in [p_j, p_{j+1}]$. Clearly $i \le j$, since s < t. If i < j then $\rho_D(a, s) \le \rho_D(a, t)$ by Lemma 2.7. Assume, therefore, that i = j. If $\rho_D(a, s) > \rho_D(a, t)$, then, again by Lemma 2.7, $\rho_D(a, t) = i \ (= \rho_D(a, p_i))$ and $\rho_D(a, s) = i + 1$. But then $s \in [p_i, t]$, with $t, p_i \in st_i(x, D)$. By Corollary 2.6, $s \in st_i(x, D)$ as well, i.e., $\rho_D(a, s) \le i$, contradicting our assumption.

3. Helly's Topological Theorem for relatively convex subsets

3.1 Introduction. Helly's Topological Theorem in \Re^2 (see [H]) states that a family of compact, connected and simply connected sets in the plane has nonempty intersection, provided every three members intersect, and every two intersect in a connected set.

In this section we give an elementary proof of this statement for the case where all members of the family are relatively convex and polygonally connected subsets of a simply connected set $D \subset \Re^2$. In view of Lemma 3.2 below, we can dispense with the requirement that the intersection of each two sets be connected.

THEOREM 3.1: Let D be a simply connected set in \Re^2 , and let $\{K_i : i \in I\}$ with $|I| \geq 3$ be a family of subsets of D that are compact, polygonally connected and relatively convex in D, and such that each three have a point in common. Then the intersection of the whole family is nonempty.

The proof of Theorem 3.1 is based on the following two lemmas, which hold for a simply connected set D in the plane.

LEMMA 3.2: Let $K_1, K_2 \subset D$ be two polygonally connected and relatively convex subsets of D. If $K_1 \cap K_2 \neq \emptyset$ then $K_1 \cap K_2$ is also polygonally connected and relatively convex in D.

Note that Lemma 3.2 does not require the sets K_i to be closed.

LEMMA 3.3: If $K_1, K_2, K_3, K_4 \subset D$ are compact, polygonally connected and relatively convex in D, and the intersection of every three K_i 's is nonempty, then $K_1 \cap K_2 \cap K_3 \cap K_4 \neq \emptyset$.

3.2 Proof of Lemma 3.2. It is clear that $K_1 \cap K_2$ is relatively convex in D. We only have to show that it is polygonally connected. Let a, c be two points in $K_1 \cap K_2$. We denote by k_1 the combinatorial distance from a to c via K_1 , that is $k_1 = \rho_{K_1}(a, c)$. Similarly we define $k_2 = \rho_{K_2}(a, c)$ and $k_{12} = \rho_{K_1 \cap K_2}(a, c)$.

If a = c then $k_1 = k_2 = k_{12} = 0$, and there is nothing to prove.

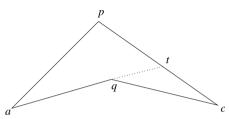
If $a \neq c$ and $[a, c] \subset D$ then $k_1 = k_2 = k_{12} = 1$.

If [a, c] is not in D then $k_1 \geq 2$, $k_2 \geq 2$ and $k_{12} \geq 2$. In this case, we shall prove two auxiliary lemmas, and Lemma 3.2 will follow as an immediate consequence.

LEMMA 3.4: If $k_1 = k_2 = 2$ then $k_{12} = 2$.

Proof: Let $\langle a, p, c \rangle$ be a two-edge path joining a and c via K_1 , and let $\langle a, q, c \rangle$ be a two-edge path joining a and c via K_2 .

If these two paths meet only at the endpoints, then their union is a simple closed quadrilateral \mathbf{Q} . Since the segment [a,c] is not in D, it must be an exterior diagonal of \mathbf{Q} .

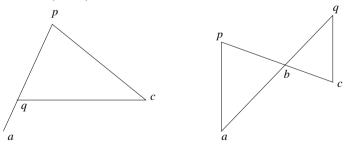


Assume, without loss of generality, that the interior angle of \mathbf{Q} at q is greater than π .

Extending the segment [a,q] beyond q inside Q we reach a point t in $[p,c] \subset K_1$, as pictured in the figure above. Since D is simply connected, it includes the interior of Q. In particular, $[a,t] \subset D$. Both a and t are in K_1 , and K_1 is relatively convex in D, hence $[a,q] \subset K_1$. In particular, $q \in K_1$. Therefore, $\langle a,q,c \rangle \subset K_1 \cap K_2$.

If $\langle a, p, c \rangle$ and $\langle a, q, c \rangle$ meet at one of the interior vertices p, q, say $q \in \langle a, p, c \rangle$, then $\langle a, q, c \rangle \subset K_1 \cap K_2$.

If $q \notin \langle a, p, c \rangle$ and $p \notin \langle a, q, c \rangle$, and the two paths meet at a point b other than a, c, then $\langle a, b, c \rangle \subset K_1 \cap K_2$.



LEMMA 3.5: If $\min(k_1, k_2) \ge 2$, then $k_{12} \le k_1 + k_2 - 2$.

Proof: By induction on $k_1 + k_2$.

If $k_1 + k_2 = 4$ then $k_1 = k_2 = 2$ and our claim follows from Lemma 3.4. Assume, therefore, that $k_1 + k_2 \ge 5$

Let $P_1 = \langle a = p_0, p_1, \dots, p_{k_1} = c \rangle \subset K_1$ and $P_2 = \langle a = q_0, q_1, \dots, q_{k_2} = c \rangle \subset K_2$ be polygonal paths joining a and c in K_1 and K_2 respectively. From the minimality of k_1 and k_2 we infer that both these paths are simple. They may or may not share a point other than a, c.

Suppose there exists a point $b \in P_1 \cap P_2$ different from a and c. If $b \in (a, p_1) \cap (a, q_1)$, then the segments $[a, p_1]$ and $[a, q_1]$ overlap, and we replace b by p_1 or q_1 , whichever comes first. We make the same stipulation at the other end of the paths.

Define:

$$\begin{aligned} k_1' &= \rho_{K_1}(a,b), \quad k_1'' = \rho_{K_1}(b,c), \quad k_2' = \rho_{K_2}(a,b), \quad k_2'' = \rho_{K_2}(b,c) \\ k_{12}' &= \rho_{K_1 \bigcap K_2}(a,b), \quad k_{12}'' = \rho_{K_1 \bigcap K_2}(b,c). \end{aligned}$$

Clearly, $k_i \le k'_i + k''_i \le k_i + 1$ for i = 1, 2.

We shall consider the following cases.

CASE I: $\min(k'_1, k'_2) \geq 2$ and $\min(k''_1, k''_2) \geq 2$. Because of the restrictions that we have just imposed on the point b, at least one of the inequalities $k''_1 \leq k_1$, $k''_2 \leq k_2$ is strict, and therefore $k''_1 + k''_2 < k_1 + k_2$. Similarly for k'_i : $k'_1 + k'_2 < k_1 + k_2$. This enables us to apply the inductive hypothesis to the pairs a, b and b, c, to obtain;

$$k'_{12} \le k'_1 + k'_2 - 2$$

 $k''_{12} \le k''_1 + k''_2 - 2$

Since $k_{12} \le k'_{12} + k''_{12}$, we conclude that $k_{12} \le k'_{12} + k''_{12} \le k'_{1} + k'_{2} - 2 + k''_{1} + k''_{2} - 2 \le k_{1} + 1 + k_{2} + 1 - 2 - 2 = k_{1} + k_{2} - 2$, and our claim holds.

Case II: $\min(k'_1, k'_2) = 1$ and $\min(k''_1, k''_2) \ge 2$.

If $\min(k'_1, k'_2) = 1$ then $k'_1 = k'_2 = k'_{12} = 1$. Applying the inductive hypothesis to the pair b, c, we obtain;

$$k_{12}'' \le k_1'' + k_2'' - 2 < k_1 + k_2 - 2;$$

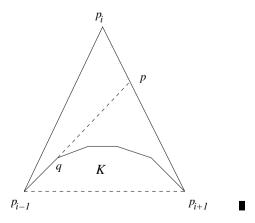
hence $k_{12} \leq k'_{12} + k''_{12} = 1 + k''_{12} < 1 + k_1 + k_2 - 2$, i.e., $k_{12} \leq k_1 + k_2 - 2$, as claimed. The same argument holds for the case where $\min(k'_1, k'_2) \geq 2$ and $\min(k''_1, k''_2) = 1$.

CASE III: $\min(k_1', k_2') = 1$ and $\min(k_1'', k_2'') = 1$. In this case $k_1' = k_2' = k_{12}' = k_1'' = k_2'' = k_{12}'' = 1$, hence $k_{12} \le k_{12}' + k_{12}'' = 2$ $(\le k_1 + k_2 - 2)$. Now assume that $P_1 \cap P_2 = \{a, c\}$. In this case $P = P_1 \cup P_2$ is a simple closed polygon. The sum of the interior angles of a simple closed n-gon in the plane is $(n-2) \cdot 180^{\circ}$. It follows that at least three vertices of P have an interior angle smaller than 180° . Thus, P has an interior angle smaller than 180° at some vertex other than a, c.

Assume, without loss of generality, that this vertex is $p_i \in P_1$, for some $0 < i < k_1$. Consider the triangle $\Delta = [p_{i-1}, p_i, p_{i+1}]$. If P does not meet int Δ , then int $\Delta \subset \text{int } P$, hence $\Delta = cl(\text{int } \Delta) \subset cl(\text{int } P) = P \bigcup \text{int } P \subset D$. In particular we find that p_{i-1} and p_{i+1} see each other via D (and hence via K_1) which contradicts the minimality of P_1 . Therefore, P does meet int Δ .

If an edge e = [s,t] of P meets int Δ , then either both endpoints s,t of e are in int Δ , or one endpoint is in int Δ , and e meets the "base" $[p_{i-1},p_{i+1}]$ of Δ . It follows that $P \cap \text{int } \Delta \subset \text{conv}(\{p_{i-1},p_{i+1}\} \cup (\text{vert } P \cap \text{int } \Delta))$. The polygon $K = \text{conv}(\{p_{i-1},p_{i+1}\} \cup (\text{vert } P \cap \text{int } \Delta))$ meets the boundary of Δ in $[p_{i-1},p_{i+1}]$ only. Note that int $\Delta - K \subset \text{int } P$. Each vertex of K, except p_{i-1} and p_{i+1} , sees p_i via int $P \subset D$, and therefore cannot be a vertex of (the minimal path) P_1 . It follows that any vertex of K, other than p_{i-1} and p_{i+1} , must be an interior vertex of the path P_2 .

Denote by q the vertex of K adjacent to p_{i-1} in int Δ , and extend the segment $[p_{i-1},q]$ beyond q, into int $\Delta-K$, until it hits the edge $[p_i,p_{i+1}](\subset K_1)$ at a point p. The segment $[p_{i-1},p]=[p_{i-1},q]\cup[q,p]$ is in D, hence in K_1 . Replace the edges $[p_{i-1},p_i]$ and $[p_i,p_{i+1}]$ of P_1 by $[p_{i-1},p]$ and $[p,p_{i+1}]$. This leads to another minimal path P'_1 from a to c in K_1 . P'_1 does meet P_2 at the point q, which is interior to both paths. This situation has been treated before.

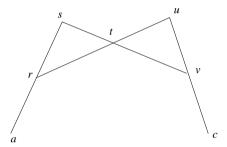


Note: The bound $k_1 + k_2 - 2$ for k_{12} is tight.

To obtain an example with $k_1 = 3 + \alpha \geq 3$ and $k_2 = 3 + \beta \geq 3$, consider a convex polygon \mathbf{Q} with vertices $a, p_0, p_1, \ldots, p_{\beta}, b, q_{\alpha}, \ldots, q_1, q_0, c$ (in this order on the boundary of Q), and with acute interior angles at the vertices a, c. Denote by P the polygonal path $\langle a, p_0, p_1, \ldots, p_{\beta}, b, q_{\alpha}, \ldots, q_1, q_0, c \rangle$. Extend the edge $[a, p_0]$ beyond p_0 , and the edge $[b, q_{\alpha}]$ beyond p_0 beyond p_0 , and the edge $[c, q_0]$ beyond $[c, q_0]$ beyond

Let Δ_1 and Δ_2 be the (usually nonconvex) polygons bounded by $\langle s, p_0, \ldots, p_{\beta}, b, s \rangle$ and by $\langle t, q_0, \ldots, q_{\alpha}, b, t \rangle$, respectively, and define $K_1 = P \cup \Delta_1$ and $K_2 = P \cup \Delta_2$. Thus $K_1 \cap K_2 = P$, $\rho_{K_1}(a, c) = 3 + \alpha$, $\rho_{K_2}(a, c) = 3 + \beta$ and $\rho_P(a, c) = \alpha + \beta + 4 = (3 + \alpha) + (3 + \beta) - 2$.

The following figure shows the construction for $\alpha = 2$ and $\beta = 3$.



3.3 Proof of Lemma 3.3.

LEMMA 3.6: Let D be a simply connected subset of \Re^2 , and let K be a relatively convex subset of D. If P is a simple closed polygon in K, then int $P \subset K$.

Proof: Since D is simply connected, int $P \subset D$. Let x be a point in int P, and let $L \subset \Re^2$ be a line through x. x divides L into two rays, say L_+ and L_- , and both rays meet P. Let $x_+(x_-)$ be the first point of $L_+(L_-)$ in P. Then $x_+, x_- \in K$, $(x_+, x_-) \subset \inf P \subset D$, hence $[x_+, x_-] \subset K$. In particular, $x \in [x_+, x_-] \subset K$.

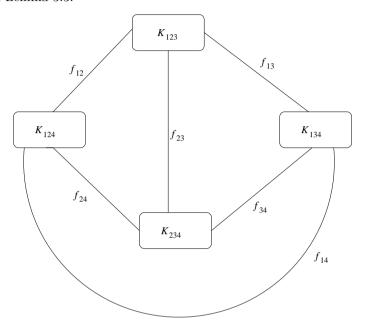
Definition 3.7: Let S, T be subsets of \Re^2 . An (S, T)-path is a simple polygonal path $L = \langle s = l_0, l_1, \ldots, l_k = t \rangle$ that starts at some point $s \in S$, ends at a point $t \in T$, and does not meet $S \cup T$ in any other point.

LEMMA 3.8: Suppose $K \subset \mathbb{R}^2$ is polygonally connected, and S, T are two disjoint nonempty compact subsets of K. Then there is an (S, T)-path in K.

Proof: Choose points $s_0 \in S$ and $t_0 \in T$. There is a simple polygonal path L' that joins s_0 with t_0 in K. Let s be the last point of L' in S. Let t be the first

point of the part of L' from s to t_0 that lies in T. Finally, let L be the part of L' from s to t.

Proof of Lemma 3.3:



Assume, on the contrary, that $K_1 \cap K_2 \cap K_3 \cap K_4 = \emptyset$. Let us denote the intersection $K_i \cap K_j \cap K_k$ $(i, j, k \in \{1, 2, 3, 4\})$ by K_{ijk} . By our assumptions, K_{123} , K_{124} , K_{134} and K_{234} are four pairwise disjoint nonempty compact subsets of D. By Lemma 3.2, they are also polygonally connected, and relatively convex in D. We shall construct now a simple polygonal embedding of the complete graph on four vertices into D, with the following specifications:

VERTICES: $a_{ijk} \in K_{ijk} \ (\{i, j, k\} \subset \{1, 2, 3, 4\} \text{ and } |\{i, j, k\}| = 3)$. The order of the indices is not important. Thus $a_{123} = a_{231} = a_{321}$, etc.

EDGES: e_{ij} (= e_{ji}) between a_{ijk} and a_{ijl} ({i, j, k, l} = {1, 2, 3, 4}). The "edge" e_{ij} is a simple polygonal path in $K_i \cap K_j$ with endpoints a_{ijk} and a_{ijl} . Distinct edges with a common endpoint share this endpoint only. Distinct edges without a common endpoint are disjoint.

CONSTRUCTION:

STEP I: For $1 \le i < j \le 4$ let f_{ij} (= f_{ji}) be a (K_{ijk}, K_{ijl}) -path within $K_i \cap K_j$ ($\{i, j, k, l\} = \{1, 2, 3, 4\}$). The existence of f_{ij} is guaranteed by Lemma 3.8.

The six paths f_{ij} are pairwise disjoint, except possibly for common endpoints. Moreover, the interior points of f_{ij} do not belong to any of the four sets K_{123} , K_{124} , K_{134} and K_{234} . To prove this fact, take, for example, a point z interior to f_{12} . Then $z \in K_1 \cap K_2$, but $z \notin K_3$ and $z \notin K_4$. Thus z cannot belong to any other path f_{ij} , nor to any of the sets $K_{\alpha\beta\gamma}$. (See the figure above).

STEP II: For each of the four sets K_{ijk} we extend the three paths f_{ij} , f_{ik} and f_{jk} that emanate from K_{ijk} , back into K_{ijk} , until they meet in a common point a_{ijk} . To be specific, consider the set K_{123} . Denote by b_{ij} the endpoint of f_{ij} in K_{123} (ij = 12 or 23 or 13). We will distinguish between the following three situations:

- 1. $b_{12} = b_{23} = b_{13}$. Call this common point a_{123} and do nothing else.
- 2. Two of the endpoints coincide and the third one is different. Assume, e.g., $b_{12} = b_{13} \neq b_{23}$. Define $a_{123} = b_{12} = b_{13}$, connect a_{123} to b_{23} by a simple polygonal path in K_{123} , and attach this path to f_{23} .
- 3. The three endpoints b_{ij} are distinct. Connect b_{12} and b_{13} by a simple polygonal path g in K_{123} . If $b_{23} \in g$, define $a_{123} = b_{23}$ and attach the part of g from b_{12} to a_{123} to f_{12} , and the other part (from b_{13} to a_{123}) to f_{13} . If $b_{23} \notin g$, choose a $(\{b_{23}\}, g)$ -path h in K_{123} . Denote by a_{123} the point where h hits g. Attach h to f_{23} , and the two parts of g determined by a_{123} to f_{12} and f_{13} , respectively.

The graph we have drawn defines a planar map with 4 vertices, 6 edges and 4 faces (v-e+f=2), by Euler's formula). The boundary of each face is a circuit with at least three edges. Since the number of edge-face incidences is $12 \ (= 2e)$, each face has exactly three edges (and three vertices). This applies, in particular, to the unbounded face. Assume, e.g., that the boundary of the unbounded face has vertices a_{123} , a_{124} and a_{134} joined by the edges e_{12} , e_{14} and e_{13} . The union of these three edges (actually paths) is a simple closed polygon T in K_1 . The unbounded face of our map is just the exterior of T. The remaining vertex a_{234} is not there, hence $a_{234} \in \inf T$ ($\subset K_1$ by Lemma 3.6). Thus $a_{234} \in K_1 \cap K_2 \cap K_3 \cap K_4$, contrary to our assumption.

3.4 PROOF OF THEOREM 3.1. The sets K_i are compact, so in order to show that the intersection of the whole family is nonempty, it suffices to show that every finite subfamily has a nonempty intersection.

Let K_1, \ldots, K_n $(n \ge 3)$ be any n elements of the family, such that each three share a point. If n = 3 there is nothing to prove. If n = 4, they all meet by Lemma 3.3. If $n \ge 5$, we proceed by induction. Define sets K'_1, \ldots, K'_{n-1} as

follows: $K'_i = K_i$ for $1 \le n \le n-2$ and $K'_{n-1} = K_{n-1} \cap K_n$. Clearly, all these sets are compact, polygonally connected (Lemma 3.2), relatively convex in D, and every three of them meet (Lemma 3.3). Thus, by the inductive hypothesis,

$$\bigcap_{i=1}^{n-1} K_i' \neq \emptyset.$$

But

$$\bigcap_{i=1}^{n-1} K_i' = \bigcap_{i=1}^n K_i,$$

and our claim holds.

References

- [BB] A. M. Bruckner and J. B. Bruckner, Generalized Convex Kernels, Israel Journal of Mathematics 2 (1964), 27–32.
- [H] E. Helly, Über Systeme abgeschlossener Mengen mit gemeinschaftlichen Punkten, Monatshefte für Mathematik 37 (1930), 281–302.
- [Hi] E. Hille, Analytic Function Theory, vol 1, section B2, Introduction to Higher Mathematics, Ginn and Company, Boston, 1959, pp. 286–287.
- [MP2] E. Magazanik and M. A. Perles, Generalized convex kernels of simply connected L_n sets in the plane, Israel Journal of Mathematics 160 (2007), 157–171.